
Proceedings of the ASME 2020 15th International

Manufacturing Science and Engineering Conference

MSEC2020

June 22-26, 2020, Cincinnati, OH, USA

MSEC 2020-XXXX

UNDERSTANDING AND EVALUATING NAIVE DIAGNOSTICS ALGORITHMS

APPLICABLE IN MULTISTAGE MANUFACTURING FROM A RISK MANAGEMENT

PERSPECTIVE

Mehdi Dadfarnia, Michael Sharp, Timothy Sprock

National Institute of Standards and Technology

Gaithersburg, MD 20899

ABSTRACT
The world has entered a state of unprecedented access to

machine intelligence algorithms, where the ease of deployment

has created a scenario where nearly every facet of life and

industry has been affected by AI. Especially within industry,

where the options for enacting AI systems are wide and varied,

the choice of which system will work best for a given

application can be daunting. Understanding when, where, and

why to apply a particular algorithm can provide competitive

advantage on effectiveness as well as greater trust and

justification when using the algorithms’ outputs. This paper

examines multistage manufacturing processes, where system

complexity can greatly influence the burden of creating custom

tailored monitoring solutions. Such barriers have encouraged

many manufacturing small and medium enterprises (SME) to

look towards generic ‘black box’ commercial software

solutions, although they may lack the sufficient expertise to

objectively determine which product best meets their

requirements. Some of the considerations faced by SMEs are

identifying tools that can successfully be deployed alongside a

potential lack of sensor coverage and/or the desire for rapid

system reconfiguration to accommodate smaller custom batch

production sizes. In these environments, detailed analytics-

based solutions are often not feasible for production equipment

monitoring. This paper provides a procedure for assessing the

suitability of various tools or algorithms used to evaluate

production process performance based on product quality

output. This paper also presents a preliminary comparative

example study of several algorithms to demonstrate this process

and evaluate the selected algorithms.

Keywords: Manufacturing simulation, problem diagnosis,

fault isolation, evaluating algorithms.

1. INTRODUCTION
Manufacturing is a highly competitive industry where every

decision should be qualified to ensure both effectiveness as well

as a solid return on investment. A common choice faced by

manufactures is the decision of if, when, and how to monitor

both the quality of their product and the effectiveness of the

machines used in the processes. Due to limits in resources,

especially for SME manufacturers, the availability of

information sources such as sensors to monitor individual

machine effectiveness may be severely restricted or otherwise

unsuitable for analysis. However, the two forms of information

available to nearly any sized manufacturer are the end part

quality and process path used to create each individual part.

Tracking part quality information and quickly identifying

sources of problems has become particularly important in agile

multistage manufacturing facilities where small batch sizes and

rapid reconfiguration are vital to maintain a competitive edge.

Rapidly changing system dynamics can exacerbate and

propagate problems in machine performance across multiple

product sets, costing thousands of dollars if not quickly

identified and managed. Selecting proper tools and methods for

monitoring system performance is a significant decision that

can have long-term implications for management and factory

operators who will have to interpret and interact with any

deployed monitoring system. Being able to understand and

justify decisions regarding the selection of a monitoring system

can increase confidence in that system and help users

understand any risk associated with its use on a factory floor.

Past research has focused on utilizing part quality data and

part process path information to aid in the determination of

problematic equipment or process links as the basis for

maintenance activities [1]. Some of these activities are very

specific, such as using historical part quality degradation to

augment and improve linear system dynamics models to predict

metrics such as tool wear [2]. The effort and effectiveness of

each technique can vary widely between applications. This

work seeks to provide a comparative analysis of several popular

fault or problem isolation algorithms and to explore the general

areas where they are most and least effective at identifying

causes of part quality degradation. From this, a workflow is

developed for testing the range of applicability of any algorithm

2

as well as a basic guide for determining suitability of tested

algorithms for various system setups. This paper is not meant

to be an exhaustive comparison of all popular methods of

multistage manufacturing monitoring, instead it is directed at

developing an environment which can be used to critically

evaluate tools and methods in a manner which allows for

objective comparative assessment.

1.1. Background and Motivation
Stream of variance modeling has been a staple of multistage

manufacturing since it was introduced in the 1990s [3].

Developed because rigid body assumptions do not always hold

through production, stream of variance modeling recognizes

that multistage processes can add compounding errors through

both parts handling and machining. Some work focused directly

on diagnosing fixture variation in multistage manufacturing

processes [4] and led to further investigations of machining

errors through explicit system modeling, such as via linear state

space models [5]. Later work in statistical process control with

linear state space models was able to utilize probability and

hypothesis testing to capture faulty elements within a process

[6]. Intuitively, many of these techniques are sensitive to the

measurements and recordings used as inputs to the monitoring

algorithm [7], meaning that they require significant sensing

capabilities throughout the system. Other barriers to correctly

implementing stream of variance algorithms include creating an

accurate representation of features, selecting an optimal parts

sampling criteria for inspection, and developing an adequate

level of detail in modeling of the possible process faults [8].

Although these and related methodologies can provide

important and accurate information regarding the propagation

of errors as well as their initial incident location, explicit system

models tend to require an advanced level of expertise, both with

the system dynamics and the algorithms themselves, to properly

implement. Additionally, many monitoring strategies relying

on explicit system modeling become impractical for

increasingly complex systems. To combat this, Huang et al.

(2002) suggest simplifications and substitutions to mitigate this

problem of growing complexity [9]. Many of these

simplifications are based around the notion that there are certain

configurations which will obfuscate areas from pinpoint

diagnosis by simple virtue of their design. Zhou et al. (2003)

understood that areas of obfuscation within a system, while

unavoidable in some situations, would be strictly undesirable

from a monitoring standpoint and proposed ways to quantify

them [10]. In general terms, areas within a system become

indistinguishable from one another if no unique information is

generated between any subset of elements (within that area of

the system).

Even with methods for simplifying the system model, often

smaller enterprises do not develop monitoring tools that require

explicit system models because the system dynamics change

too rapidly to make any explicit modeling a practicality. This

has driven investigations into less analytically-explicit

monitoring algorithms. Further, due to the comparatively low

amount of “stable data” produced by reconfigurable systems,

practitioners seek algorithms that can operate with minimum

input. One approach relies on using historical data to develop

patterns of expected behavior from the machines based on post-

production (or intermittent production) product quality reports,

then comparing current behavior to develop diagnostic

information. For example, methods for comparing expected

distribution curves [11] and data- data-driven techniques for

variation reduction [12] are gaining acceptance in multistage

manufacturing.

Ultimately increasing data integration in automation and

manufacturing depends on strong algorithms supporting human

decision-making [13]. The strength of these algorithms depends

on their performance evaluation and applicability. Evaluating

the wide variety of algorithms in development and in practice

has been inconsistent and traditionally reliant on the expertise

levels of the developers or practitioners involved in the

algorithm deployment. Most evaluations will stop if there exists

a comparative analysis against one other algorithm on a limited

set of system scenarios or data. This is due in part to the large

time investment required to set up a large comparative study,

but also due to a lack of understanding about how to set up such

a study. In order to best evaluate an algorithm’s suitability for a

system, a majority of potentially disruptive scenarios must be

considered. Regardless of the method or selection and

availability of input data, the procedure for qualifying an

algorithm or tool on a system must consider a majority of

relevant edge cases as well as the nominal expected scenarios.

This work explores evaluating process fault or problem

diagnostic tools with a very limited set of input data,

specifically process path and part quality. That does not

preclude extension of these procedures to more extensive

algorithm testing. The choice to focus on algorithms that utilize

limited information was motivated to both highlight the

procedure on a simple comparative case with standard input

parameters and to help shed light on real decision-making

problems faced by SMEs. This case study will examine some

of the ‘black-box’ solutions that are being applied to this

problem. These include probabilistic statistical algorithms,

gradient descent, genetic algorithms, and neural networks.

These solutions will be framed to evaluate unsophisticated

applications similar to that as may be identified by an SME

seeking low-cost solutions to integrating new monitoring

programs.

2. METHODOLOGY
This paper utilizes a general workflow for testing various

fault or problem isolation algorithms. Defined or obtained

series of system configurations will serve as the validation

environment for obtaining exemplar data to investigate

representations of a wide range of normal and off-normal

operations. Special emphasis should be placed on investigating

scenarios for both configurations and conditions that are

reasonably expected to exhibit themselves in practice and

would be antagonistic towards the algorithms being evaluated.

In most multistage manufacturing systems, it is unreasonable to

attempt to investigate all possible scenarios; part of this work is

meant to help guide and highlight the process of determining

high-risk edge cases that will provide the most pertinent

information regarding the algorithm being evaluated. The final

steps of the evaluation procedure are to apply the selected

algorithms and measure them via metrics most suited to the end

goals of the production line and, if necessary, iterate through

3

the antagonistic scenarios to develop confidence in the

coverage and performance of the algorithms.

2.1. Selecting Testing Scenarios
To show the viability and effectiveness of this workflow, a

simulator was developed that can represent a variety of

multistage manufacturing systems and conditions. For an actual

manufacturing facility, it may be sufficient to simulate the

actual or possible configurations for that specific production

floor, possibly augmented with available historical data. This

paper focuses on cases where the particular system that an

algorithm will be tested on is not known beforehand. This

additionally addresses the broader research perspective on

which types of systems an algorithm is useful for. Testing

various configurations follows from understanding that system

configuration can profoundly impact the performance of the

manufacturing process [14], and thus any monitoring tools

deployed on them.

Each testing scenario consists of two major aspects: the

system configuration and the condition. The configuration

relates to how the equipment is connected and the process flow.

The condition conveys the health of machines, production rates,

etc. In many systems, the large number of possible system

configurations and conditions makes it impractical to test every

single one. Therefore, the testing methodology focuses on three

primary classes of scenarios: nominal, high-risk, and those that

are antagonistic towards the algorithm being tested. Some

scenarios may fall into multiple classes, but a proper set of

testing scenarios should provide sufficient coverage

representing these classes as evenly as is practical. Finally, each

scenario has a likelihood that gives a relative expectation of

how often that scenario would be expected to occur in the

lifetime of the system.

A major driver in selecting scenarios is the potential

consequences of that scenario, both good and bad.

Understanding the potential outcomes of combinations of

missed fault alarms, false fault alarms, as well as correct alarms

all can help drive the selection of scenarios. Coupled with the

associated frequency, a potential risk for each scenario can be

developed and used to identify important test cases. The risk

metric (frequency * consequences) should be evaluated in terms

most suited to the application. In a manufacturing setting, for

example, risk can be measured as production loss per hour.

Once acceptable levels of risk are established, any scenario

which falls below that can be safely ignored.

2.1.1. Low-Risk High-Frequency and High-Risk
Scenarios

The scenarios that should be developed first are those

capturing the most common configurations and expected

conditions of the factory environment. Even if the risk of these

scenarios is fairly low, the fact that they are the most common

scenarios necessitates their evaluation for any potential

monitoring algorithm. These include scenarios such as a single

faulty machine that does not stop operations. One occasionally

overlooked scenario that should always be included is the most

common configuration(s) with fault-free, nominal conditions.

This is critical to help characterize the false positive rates of any

diagnostic algorithms and establish a risk based on false alarms.

The second priority scenarios are those that may or may not

be common but present a high-risk factor if the algorithm is

unable to correctly identify the source of incipient defects or

problems. High risk can come from both false positives and

false negatives in terms of identification and must be evaluated

for different combinations of both.

2.1.2. Antagonistic Scenarios
Antagonistic scenarios are less intuitive because they are

typically more dependent on the algorithm than the physical

process, but they are important to understand when interpreting

evaluation testing. Antagonistic scenarios are configurations

and conditions for which an algorithm is expected to perform

poorly based on the assumptions and capabilities of that

particular algorithm. These types of scenarios may not be

known prior to the evaluation of the algorithm, but if a set of

poor performing scenarios begins to develop, any identifiable

commonalities can be used to group the full set of test scenarios

and add extra examples to those groups if needed.

Once a set of antagonistic scenarios is developed, the

existing suite of test scenarios can be checked for how

commonly those antagonistic qualities occur. If they are

prevalent, especially in high risk scenarios, there may not be a

need to continue evaluating that algorithm, because it would be

expected to perform poorly in these high-risk scenarios.

However, if there are not many scenarios with these common

traits, it is prudent to construct more such scenarios and

evaluate if these have a high enough cumulative risk to affect

the decision of accepting the algorithm.

2.2. Obtain Evaluation Data
Simulations and/or historic data will be required to perform

these tests. Where available, simulators would generally be

desirable to augment the available scenarios that can be

evaluated. Real systems with huge backlogs of data can be used

as an initial set of testing scenarios, but it is unlikely that real

systems have substantial amounts of high-risk data under the

array of faulted conditions that would be desired to fully

evaluate a potential scenario. The flexibility of a simulator,

augmenting any available real scenario data, allows for better

exploration of high risk and antagonistic scenarios. Existing

data or logs of activities can also be used to help develop the

associated frequencies and consequences of any scenario.

Maintenance and production logs may be a good source of this

information.

2.3. Evaluate Algorithms
Once the test scenarios and data has been obtained, the

algorithms should be streamed onto the data as they would

receive it in an actual production environment. For example, if

there is not a live stream of the product quality available in the

plant, then the algorithm should be provided batch style updates

with corresponding time stamps and other relevant meta-data.

The processing time of the algorithm under evaluation should

also be noted at this time. If the routine takes longer to process

than the update rate for the system, special considerations and

accommodations must be made, such as artificially slowing the

input rate. If this cannot be done, or the accommodations are

4

too severe to work at scale, the algorithm may be deemed

unusable without further testing.

2.4. Representing Key Algorithm Performance
Indicators

When evaluating algorithms, it is important to select

performance indicators that not only reflect the performance of

the algorithms but do it in a way that is relatable to the end goals

of the monitoring algorithms. For most diagnostic isolation

problems, the most important metrics are those that directly

relate to negative consequences: false positives - identifying a

fault where there isn’t one, false negatives - failing to identify a

fault, and circumstances that produce both. Because the

repercussions of these three outcomes are generally

significantly different and may even relate to specific

equipment within the system, it is most appropriate and

convenient to record the performance of the algorithms as a

series of confusion matrices, one for each testing scenario. The

important aspect for a risk-based evaluation is that each testing

scenario have a numeric representation of the rate of negative

consequences that can be translated into a probability during the

final evaluation.

2.5. Summary
Below is a summary of the algorithm evaluation process

presented in this section. The methods and selection criteria

presented in this section are not intended to be interpreted as the

only, or best possible criteria for every case. Instead they are

described as a possible set that would be applicable in most

cases and are the methods used in this work. The next section

will describe the specifics of this work as applied to the

developed test cases. The algorithms chosen for evaluation are

also described, followed by the general outcomes of that

investigation.

1. Define Testing Environment

2. Select Testing Scenarios

a. Nominal and High-Risk Scenarios

b. Antagonistic Scenarios

3. Obtain Data Covering Selected Scenario

4. Evaluate Selected Algorithm(s)

a. Check Usability / Operational Concerns

b. Evaluate Performance

5. Repeat as needed to discover edge cases with poor

performance

3. PROOF OF CONCEPT CASE STUDY
This case study highlights the methodology for evaluating a

specific class of monitoring algorithms that may be used to

determine potential locations of induced damage or defects in

products output from multistage manufacturing processes. The

scenarios and configurations presented are selected to allow

broad level performance investigation of algorithms on a

potentially unknown system. A simulator was created as part of

this work to rapidly create arbitrary scenarios generating the

required end-of-line part quality and part process production

path data. This data is then used to evaluate multistage

manufacturing system diagnostic algorithms. The setup of the

simulator includes the manufacturing system configuration

(section 3.1), test case scenarios that characterize nominal and

edge cases faced by the system (section 3.2), and diagnostic

algorithms applied to analyze the scenarios (section 3.3). This

evaluation is presented as preliminary work and additional

work is needed to completely characterize the algorithms under

evaluation.

3.1. Define Testing Environment
Figure 1 shows an example of different multistage

manufacturing paths to produce a part, given a limited number

of paths and available machines. Machines can be used across

multiple paths (process plans), subject to timing restrictions,

resulting in a directed graph representation of product

production. Here we assume that it is possible for different

production paths to use the same machine, but not possible for

any path to use a particular machine more than once (reentrant

flows). The subset of machines within each process path is

assigned, either randomly or manually, at the beginning of each

scenario and held static for the duration of the test.

The type of manufactured product is unspecified during the

simulation, but it is assumed that quality metrics of any

produced parts are scalable to some equivalent metric. Each

part is given a single score (Q_part) to indicate its build quality

at the end of its sequence (end-of-line part quality). End quality

assessments (Q_part) are scaled to a percentage of

acceptability, where 100 % is perfect and anything below 0 %

is considered lost product. This score relies on the added value

from each machine that the part interacts with in its production

path. Added quality value to the part is uniform across all

machines unless the part interacts with a machine that

underwent a sudden degradation or failure. In this case, the

degraded machine will subtract from the part’s accumulated

value. Currently, part quality inspection is limited to the end of

each production path.

Although simplified and abstract, this system configuration

simulator exhibits key behaviors of real-world production

settings, including resource constraints, a limited number of

production path setups, and the limited number of available

machines for production. Further development of the system

configuration in future studies will include constraints on

machine-ordering in a path (i.e., having rules such as “machine

#6 may never be used before machine #3”) and available

Figure 1. An example of three, unique three-stage machining paths

to produce a part given five available machines.

5

machines categorized by different types, with constraints on the

number of each machine type required to build a part. The

machines may also have a more expansive feature space that

determines each machine’s added value to a part’s quality.

3.2. Select Testing Scenarios
The above setup provides a framework to simulate

different scenarios that could be used to evaluate multistage

manufacturing system diagnostic algorithms that attempt to

identify causes for part quality degradation. The focus in this

paper is on part quality degradation due to sudden machine

degradation or failure. The simulator receives specifications

that after a certain number of products, a subset of the total set

of available machines will degrade their added manufacturing

values to the quality of parts that interact with it. As the quality

for each part relies on the accumulation of the added values

from all machines that are in the part’s production path, the

paths that have one or more of these degraded machines will

output parts with lower end-of-line part quality values. Figure

2 illustrates a temporal view of the part quality outputs for an

example test case scenario. Note that although the scalar part

quality values are arbitrary, there is a drop-in value for parts

that have been processed by some of the paths (that include the

machine degradation at t=200 s).

The inputs into the configuration of the simulator are the

number of machines on the “production floor”, the number of

processing steps each item needs to be created, the number of

production paths or lines that a part can be created on, and the

rate at which those parts are made. These inputs define a system

of machines and paths involved in the multistage manufacturing

process to produce each part. These key manufacturing

parameters that go into the system configuration are

summarized in Table 1. Presented in this paper are two

preliminary scenarios defined by the values given in Table 1.

Test case scenarios are built to evaluate how well

diagnostic algorithms identify degraded machines. In

particular, it is interesting to evaluate the response of these

diagnostic algorithms to different numbers of machines

degraded at a time. Using the number of degraded machines as

the main experimental factor in test case scenarios provides

insight into the usability and accuracy of each tested algorithm

for different numbers of degraded machines. These test cases

are implemented on the two system configurations in Table 1.

For the first system configuration example, where there are

13 unique production paths and 4 machines (selected from an

available 10) in each path, there are three levels to the

experiment factor: one, two, or three machines are degraded. A

maximum of three degraded machines is selected because it

reaches sufficient coverage over scenarios where most of the

machines in some production paths (3 of 4) are producing

undesirable results.

Ten experiments, or test case scenarios, are performed for

each of these three machine degradation levels. Each of these

experiments is performed with different randomly-selected

permutations of degraded machines. Ten is the maximum

number of permutations when only one machine degradation

occurs out of ten available machines. The number of possible

permutations for two or three machine degradations is much

higher. For the sake of brevity and producing initial results, the

other machine degradation levels were limited to ten test case

scenarios as well.

Figure 2. Example of a temporal view of part quality production.

Machine degradation begins at t=200 s. Subsequently, paths that

include the degraded machine produce lower-quality products.

Table 2. Test Case Scenario Setup

 System #1 System #2

Number of Factor Levels 3 4

Number of Experiments

Per Level

10 12

Total Number of Test

Case Scenarios

30 48

Degradation Start Time

(s)

200 200

Number of parts

(stopping time)

500 800

Table 1. System Configuration Parameters

Description System #1 System #2

Total number of

available machines

10 12

Machines in a

production path

4 6

Number of unique

production paths

13 20

Part production rate

(part per second)

1 1

6

Test case scenarios are similarly designed on the second

system configuration example, where there are 20 unique

production paths and 6 machines (out of an available 12) in each

path. Since the scope of this example’s multistage

manufacturing system is larger, there are instead four levels to

the experiment factor (a maximum of four degraded machines)

and 12 experiments with different permutations at each level

(12 is the maximum number of permutations when only one of

12 available machines degrade). Table 2 summarizes the test

case scenario setup for each of the system configurations in

Table 1.

The simulator generates the scenarios and stores the

machines that degrade in each test case. The sequence of

machines in the paths of each system configuration is held

constant against the different machine degradation schemes

from the test cases. This allows for applying diagnostic

algorithms on each of these test case scenarios to compare their

prediction of degraded machines against the actual machine

failures as well as to evaluate their applicability to different

machine degradation scenarios (i.e. different numbers of

machines that degrade at a time).

The system configuration and test case scenario setups also

enable the derivation of different properties from the system

configurations. These properties may include the frequency of

degraded machines within all the production paths or the

amount of information that can be distinguished from the

machines traversed in each path. This gives the opportunity to

manipulate the properties and observe the prediction response

of diagnostic algorithms to changes in different properties in the

system configuration. This provides insight into the

applicability and limitations of the diagnostic algorithms when

there are changes in the system configuration. Discovering

these insights requires changing the test case scenario setup to

use the derived properties as experimental factors in a more

extensive, robustly-designed experimental methods [15].

Deriving these properties and designing experiments around

them are topics intended to be explored in future studies. Also,

this paper has only been looking into the case of sudden

machine failures. Future studies will expand to look at different

types of machine failure modes, such as observing when

diagnostic algorithms identify more gradual machine

degradations.

3.3. Diagnostic Algorithms Application Setup
Five different diagnostic algorithms have been selected for

evaluation and applied on each of the test scenarios for this

work. Each algorithm makes use of only two sources of

information: the end-of-production-line part quality, and the

part process production path. Testing different algorithms

allows to identify strengths and weaknesses of each one with

respect to the different system configurations, amounts of

machine induced degradation, and locations of induced

damage. The selected algorithms are only a small random

sampling of potentially useful methods for isolating induced

faults on a multistage production line. The following describe

the five algorithms tested.

3.3.1. Probabilistic Statistical Algorithms
One of the more intuitive mechanisms for performing

diagnostic isolation is to evaluate the probability or likelihood

that a given machine is producing a defective part based directly

on the observed outputs corresponding to that process element.

This could be framed under the guise of temporal difference

reinforcement learning, a relative to Q learning. Presented

below are two algorithms that utilize the intuitive nature of the

process to create logical evaluations of the relative probability

any given machine (process element) is inducing damage on the

final observed product.

Part Quality Contribution Indicator (PQCI):

The first algorithm uses a running log of parts produced by

each machine. It checks the ratio of the quality of parts operated

on by a particular machine versus the quality of parts that were

not. It uses this comparison to determine an estimate of the

average induced damage at that machine. For this study, the

quality of the last ten parts to be operated on by each machine

is kept and measured. One of the obvious shortcomings of this

method is that if a machine does operate on a significant number

of parts as compared to the total number produced, it will be

slow to identify the problem machine. However, with even

levels of part flow or if the problem element is not a high-risk

machine, then this algorithm may be expected to perform

suitably for many scenarios.

Estimated Part-Path Contribution Indicator (EPPCI):

The second algorithm investigated also makes use of a

moving window of part quality to produce diagnostic

indicators. However, this algorithm keeps running logs of each

process path instead of one for each individual processing

element. In scenarios with relatively few process paths, this

may improve scalability. Conversely this could also hinder

scalability in highly complex system configurations with a large

number of paths.

By performing a simple calculation using the system

configuration and path quality logs, this algorithm calculates

the average product quality of each machine per path to identify

both the best and the average part quality produced by each

machine based on the paths that include it. This method

attempts to circumvent the potential problem of having certain

process links, instead of individual machines, be the source of

induced errors. For this paper, isolation of links was strictly

excluded as it is intended for future papers, but the setup of this

algorithm begins that process. Regardless, this algorithm would

also be expected to perform well in isolating individual problem

machines and so is evaluated on such here.

3.3.2. Prediction Error Minimization Algorithms
There are a class of low entry barrier machine learning

tools and algorithms that attempt to minimize some predictive

function designed to describe the observed output of the system.

The commonality of this class is the need for that descriptive

function. In this case, a simple minimization between the

observed product damage (1 – Quality) for each machine and

the predicted total amount of added damage from the processing

machines. Assuming each machine linearly adds a calculable

amount of damage to the product during processing, this class

7

of algorithms can estimate the average amount of that damage

that is added by each machine.

𝐸𝑄(1) 𝐸𝑟𝑟𝑜𝑟 = 𝑎𝑏𝑠((1 − 𝑠𝑢𝑚(𝐼𝐷𝑎𝑚_𝑚𝑎𝑐ℎ𝑠_𝑝𝑎𝑟𝑡))
− (1 – 𝑄_𝑝𝑎𝑟𝑡)), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑎𝑟𝑡𝑠

The selected predictive equation of error for a system, shown in

Eq(1), is utilized for three different diagnostic algorithms.

Based on simple Gradient Descent (GD), one on Genetic

Algorithms (GA), and one on applied Neural Networks (NN).

Regardless of the mechanical implementation, these tress

routines are all essentially trying to minimize this error function

by producing induced damage estimations (IDam) for each

machine.

Gradient Descent (GD): The Gradient Descent based method

utilizes a standard off-the-shelf product (Matlab’s fmincon) to

search the possibility space for the combination of each

machining element between sensible limits set by the user. For

simplicity in this test, the choice was made to limit the possible

damage induced by each machine to be between 0 (no damage)

and 1 (complete loss of product acceptance). While other

implementations of this algorithm may find other bounds more

suitable, these are simple enough to cover a broad range of cases

and limit processing time to a functionally usable amount.

Genetic Algorithms (GA): Considered a generally more robust

optimization method, genetic algorithms have been used

extensively on optimization problems due to their broad

applicability, ease of use, and global perspective [16]. Like the

gradient descent method above, a genetic algorithm is applied

to test case scenarios to minimize the objective function in Eq.

(1). The optimization process also outputs each machine’s

contribution to part quality degradation and a prediction of the

machines that have degraded. To ensure the feasibility of the

predictions of machine degradations, the algorithm was iterated

5 times over each test case scenario and its predictions were

averaged. The genetic algorithm implemented in Matlab’s

Global Optimization Toolbox was evaluated using its default

options (i.e., population size = 50, maximum number of

generations = 100).

Neural Networks (LSTM): The final prediction error

minimization technique applied in this work is a Long Short

Term Memory (LSTM) based neural network. These are a

special form of recurrent neural networks, which as explained

by [17], are better able to process time series information due

to having storage potential creating an effective memory of

local trends. Neural networks have become standard machine

learning tools due to their ease of use, effectiveness as

classifiers, and practicality for obtaining features out of a

dataset. The LSTMs created for this work serve to provide not

only preliminary insights on their applicability, but also to

justify further testing on additional architectures and

configurations in future studies.

The selected network configuration under evaluation has a

sequence input layer, a series of two hidden LSTM layers (each

followed by a 20 % dropout layer), one fully connected layer,

and a final regression layer. The input vector to the LSTM

network includes the part quality and a corresponding binary

vector representing production path elements of that part.

Creation and execution of the LSTM network was performed

using Matlab’s Deep Learning Toolbox. The specifics of

hyperparameter selection and architecture development are

beyond the scope of this work. The process used here to

compare various algorithms could be equally suited for

comparing various neural network architectures.

4. TEST RESULTS
The results of evaluating the algorithms discussed in Section

3.3 compare their ability to identify damage-inducing machines

in different scenarios and begin to establish their expected

performance for classes of scenarios. The five diagnostic

algorithms are evaluated and compared by applying them to the

test scenarios (see Table 2) developed for each of the two

multistage manufacturing system configurations (see Table 1).

That is 30 test case scenarios for system configuration #1,

evenly divided into 3 different categories of test cases, and 48

test case scenarios for system configuration #2, evenly divided

into 4 different categories.

Each algorithm is evaluated using metrics chosen to

measure the algorithm’s performance at diagnosing machine

degradation. To relate to real world based effects, metrics that

can be directly combined with negative scenario consequences

were selected: the false negative rate (FNR), the false positive

rate (FPR), and the combination of the two. The false positive

rate is calculated as the number of good machines incorrectly

predicted to be inducing damage divided by the total number of

machines that are operating in the system (Type-I error).

Likewise, the false negative rate is calculated as the number of

machines inducing damage not isolated by the algorithm

divided by the total number of machines that are indeed

producing damaged units (Type-II error). Not identifying a

machine as a source of damage incurs costs associated with

manufacturing defective parts and goods. While incorrectly

identifying a machine as a source of damage incurs costs from

misspent maintenance, inspection, and production downtime.

Figures 3A and 3B summarize the evaluation results from

applying each of the five diagnostic algorithms to the selected

test scenarios. In system configuration #1 there are three classes

of test case scenarios corresponding to the number of machines

that are producing degraded products: one, two, or three

machines. Each diagnostic algorithm, except the LSTM neural

network, is applied over the ten scenarios in each category. The

resulting FNR and FPR evaluations are averaged for each

category. This is similarly done for system configuration #2, but

with four different level categories of test case scenarios and

twelve test cases in each category.

Due to the requirements for development of a neural

network, the LSTM network testing was performed differently.

Rather than evaluate its performance on each category of test

scenarios individually, the LSTM was trained, tested, and

evaluated on all the test case scenarios available for each system

configuration (30 test cases for system #1 and 48 for system

#2). The model randomly selected 67 % of each configuration’s

test case scenarios as training data and the rest of the scenarios

as testing data. This ensured that the network had training of

various conditions on each configuration, allowing it to produce

8

predictions of both nominal and problem status of machines.

This also means that the LSTM’s evaluated FNR and FPR

metrics in Figures 3A and 3B cannot be directly compared to

the corresponding evaluations of the other algorithms, but it still

points towards preliminary insights into the applicability of

neural networks for machine failure predictions. The LSTM

results are included here for completeness but will be

readdressed in future work.

As structured in Section 3.3, the algorithms listed each

produce relative values for problem likelihood. In order to

translate this into a classification of ‘problem’, ‘no problem’, a

series of thresholds must be established. A threshold of -0.1

likely induced damage is selected as a discriminator for

evaluating PQCI and EPPCI. GD and GA have been framed to

operate on a different scale which translates their cutoff to a

threshold of 0.6 is selected as the discriminator for evaluating

both GA and GD.

Like the GD and GA, the LSTM neural network also tries

to predict which machines have contributed to part quality

degradation. This means the threshold must also be between 0

and 1 to quantify the degree of a machine’s contribution to part

degradation. However, training the neural network on all the

test case scenarios of each system configuration means that it

tried learning from a wider range of antagonistic test case

scenarios (rather than make a prediction from one test case at a

time like the other four algorithms). This decreases the

confidence in the predictions and so the discriminating

threshold was lowered to 0.3.

At first glance, the results in Figures 3A and 3B show that

the GD and GA algorithms provide superior performance to all

the other algorithms. GD results in FNR and FPR values of 0,

meaning it never identifies a failed machine as operational or

an operational machine as degraded. This result is similar for

GA, except a small false negative rate is produced when there

are 3 machine degradations in system configuration #1. This

supports a hypothesis that GD and GA will not make perfect

predictions when there are too many machine failures in a

production line. More testing is needed to see if this is indeed

the case and to identify antagonistic test scenarios that may

hamper the performance of GD and GA.

The PQCI and EPPCI algorithms exhibit trade-offs with

each other. EPPCI produced no false negatives – no predictions

of failed machines as operational - in any of the test case

scenario levels for either system configuration. However,

EPPCI produces a lot of false positives, especially for test cases

where there are more machines that simultaneously degrade. It

especially showed bad performance for multiple machine

degradations in the second system configuration. On the other

hand, PQCI produced false negatives that increased with more

machine degradations, but it showed consistent levels of false

positive rates that did not increase (drastically) with more

machine degradations. The strength of one of these two

algorithms over the other depends on the costs of having false

negatives versus false positives in a manufacturing setting.

The predictive performance of both PQCI and EPPCI does

not show to be as good as GD and GA, but their potential for

scalability of more complex systems and to search for more

indirect link based problems shows more promise. GD and GA

attempt to search a full error space which grows exponentially

with system complexity, while the evaluation space of the Q-

learning space of PQCI and EPPCI grows linearly.

These insights are invaluable for creating antagonistic

scenarios for further testing and evaluation of the algorithms.

When identifying antagonistic test scenarios, an algorithm may

have associated ranges of FNR and FPR that could help to

further generalize the evaluation outcome. By properly

combining the likelihood of these categories of test cases, their

FNR and FPR values, an aggregated weighted evaluation of

each diagnostic algorithm could be made to augment the

existing test scenarios. This additional 'virtual testing' can save

time and resources, while still valuably expand the coverage of

the algorithm evaluation.

The LSTM neural network does provide many false

negatives but produced false positive rates that are comparable

Figure 3. Evaluation results for applying the five diagnostic

algorithms to predict machine degradation for three different test

case scenario categories of: (A) system #1 and (B) system #2.

9

to PQCI and EPCCI. A portion of the unfavorable results is due

to training the LSTM on all test case scenarios for each system

configuration. This points to the conclusion that learning on too

many different antagonistic scenarios may not be as helpful for

making machine failure predictions – there is a trade-off

between the number of different antagonistic scenarios and the

quality of the machine failure predictions. It will be helpful to

see how the LSTM network performs when learning from and

being applied to only one test case category level at a time.

Furthermore, the LSTM network presented here is supposed to

showcase preliminary work in the area, and more work will be

done to fine-tune LSTM-related hyperparameters or evaluate

other neural network structures.

5. CONCLUSIONS AND FUTURE WORK
This study showcases a preliminary understanding,

applicability, and comparison of diagnostic algorithms (Section

3.3) when applied to predict machine failures in different

simulated scenarios. The goal is to develop procedure

recommendations for applying diagnostic monitoring

algorithms across different scenarios, ranging from nominal

expected scenarios to edge cases, faced by generic system

configurations or particular configurations.

Further work needs to be done to extend the selection space

of testing scenarios that are covered by the evaluation

methodology, and to increase diagnostic algorithm

development and evaluation. Two areas of particular interest

right now include, 1) further development of risk assessment as

an algorithm evaluation criteria, and 2) extending quality

inspection to include mid-production process inspections.

Algorithm evaluation can more precisely assess risk by

incorporating costs and consequences associated with false

negative and false positive machine degradation predictions, as

well as relative likelihoods of different scenarios faced by the

system configuration. This risk metric will represent more-

practical effects and trade-offs of algorithms in relatable real-

world measures beyond abstract classification metrics. In this

preliminary study, the part quality inspection was conducted

only at the end of the production path. This inspection data can

be used to determine points in the production line that may

require additional inspection or maintenance effort. These

additional inspection points may provide diagnostic algorithms

with more data collected throughout the production path and

more context to make better predictions.

DISCLAIMER
The use of any products described in this paper does not imply

recommendation or endorsement by the National Institute of

Standards and Technology, nor does it imply that products are

necessarily the best available for the purpose.

REFERENCES
[1] Lu, Biao & Zhou, Xiaojun. (2019). Quality and reliability

oriented maintenance for multistage manufacturing

systems subject to condition monitoring. Journal of

Manufacturing Systems. 52. 76-85.

[2] Hao, Li & Bian, Linkan & Gebraeel, Nagi & Shi, Jianjun.

(2016). Residual Life Prediction of Multistage

Manufacturing Processes With Interaction Between Tool

Wear and Product Quality Degradation. IEEE Transactions

on Automation Science and Engineering. 14. 1-14.

10.1109/TASE.2015.2513208.

[3] Hu, S.J., Yoram Koren (1997). ”Stream-of-Variation

Theory for Automotive Body Assembly”, CIRP Annals,

Volume 46, Issue 1,1997, Pages 1-6.

[4] Ding, Yu & Ceglarek, Dariusz & Shi, Jianjun. (2000).

Modeling and diagnosis of multistage manufacturing

processes: Part I state space model.

[5] Djurdjanovic,D., J. Ni, (2001). "Linear state space

modeling of dimensional machining errors", Trans.

NAMRI/SME, vol. XXIX, pp. 541-548.

[6] Li, Yanting, & Fugee Tsung (2009) False Discovery Rate-

Adjusted Charting Schemes for Multistage Process

Monitoring and Fault Identification, Technometrics, 51:2,

186-205.

[7] Zeng, Li, & Shiyu Zhou (2007) Variability monitoring of

multistage manufacturing processes using regression

adjustment methods, IIE Transactions, 40:2, 109-121.

[8] Zhang, Min & Djurdjanovic, Dragan & Ni, Jun. (2007).

Diagnosibility and sensitivity analysis for multi-station

machining processes. International Journal of Machine

Tools and Manufacture. 47. 646-657.

[9] Huang, Q., Zhou, S., and Shi, J. (2002). “Diagnosibility of

Multi-Operational Machining Processes Through

Variation Propagation Analysis,” Robotics and CIM

Journal, 18, 233–239.

[10] Zhou, Shiyu, Yu Ding, Yong Chen & Jianjun Shi (2003)

Diagnosability Study of Multistage Manufacturing

Processes Based on Linear Mixed-Effects Models,

Technometrics, 45:4, 312-325.

[11] Davari-Ardakani, H., & Lee, J. (2018). A Minimal-Sensing

Framework for Monitoring Multistage Manufacturing

Processes Using Product Quality Measurements.

[12] Liu, Y., Sun, R. and Jin, S. (2019), "A survey on data-

driven process monitoring and diagnostic methods for

variation reduction in multi-station assembly systems",

Assembly Automation.

[13] Thoben, K. D., Wiesner, S., & Wuest, T. (2017). “Industrie

4.0” and smart manufacturing-a review of research issues

and application examples. International Journal of

Automation Technology, 11(1), 4-16.

[14] Koren, Yoram , S. Jack Hu, Thomas W. Weber, (1998)

Impact of Manufacturing System Configuration on

Performance, CIRP Annals, Volume 47, Issue 1.

[15] Drain, D. C. (1997). Handbook of experimental methods

for process improvement. CRC Press.

[16] Goldberg, D. E. (1989). Genetic Algorithms for Search,

Optimization, and Machine Learning. Reading, MA:

Addison-Wesley.

[17] Cady, F. (2017). The Data Science Handbook. John Wiley

& Sons.

